Archive for the ‘Pilas de Combustible’ Category

Sub-Nano Platinum Particles Make Fuel Cells 13 Times Better

23/07/2009

Nano-sized machinery makes me shiver. Thinking at a molecular and atomic level when speaking about technology makes me wonder even more. Even if I consider myself a logic person, extremely small and extremely large objects impress me.

FUENTE – The Green Optimistic – 22/07/09

Fuel cells, the converters of hydrogen into electricity, use nano-sized platinum particles as catalysts for the reduction of oxygen. They have usually been expensive and inefficient, creating far less impact on the auto industry than expected.

Japanese scientists have created sub-nano scale platinum clusters with high catalytic activity for use in fuel cell applications. The tiny catalyst particles – the smallest of which contain just 12 atoms in total – could help to conserve the planet’s limited supply of platinum.

The team found that as they decreased the size of the clusters, their catalytic activity for the reduction of oxygen increased. At 12 atoms, each and every atom was exposed at the surface and the catalytic current produced was 13 times that of commercial platinum nanoparticles, which by contrast contain hundreds or even thousands of atoms. According to the researchers, however, the improved performance is probably not due to a simple increase in surface area but to quantum size effects that are not yet fully understood.

They created their sub-nano platinum clusters by adding platinum chloride to dendritic phenylazomethine (DPA) templates – branched molecules that function as rigid, cage-like structures in which the metal atoms became trapped. They were able to tightly control the number of metal coordination sites, and therefore platinum atoms, in each cage. Adding a reducing agent released the platinum clusters as stable structures.

Hoping this would make fuel cells cheaper, we can only wish this technology evolves and comes to the market as soon as possible, because hydrogen is the cleanest energy carrier on Earth, producing nothing but water after its usage. Storage solutions also have a parallel evolution, and it seems to keep up. But that’s another story.

Author: Ovidiu

Anuncios

Are Fuel Cells the Key to Solar Thermal Technology?

17/06/2009

Why are photovoltaic panels more popular than solar thermal collectors on homes? One big reason is easy storage. New technology may change that.

FUENTE – GreentechSolar – 16/06/09

Homeowners with PV panels on their roofs effectively store power by shuttling electricity generated in the daytime onto the grid, said Jane Davidson, a professor at the University of Minnesota and the director of the Solar Energy Laboratory there, during a presentation at the Fifth Germany California Solar Day taking place at PG&E headquarters in San Francisco today.

It’s not so easy in solar thermal. Concentrated solar thermal plants in the desert store heat from the sun in large tanks of molten salt. That can be used to create steam to run a generator for a few hours after the sun goes down.

But in homes it is not so easy. Although roughly 75 percent of the homes and commercial buildings in the U.S. could potentially derive some of their power from solar systems, most homes aren’t located in the center of the desert and thus don’t get the kind of solar radiation a CSP plant will.

To make solar thermal economical, many of these buildings will need seasonal storage. “There is a mismatch,” she said. “They need systems so that we can store it in the summer for use in the winter.”

Which brings us to the headline. For long-term storage, storing energy in chemical bonds – the secret sauce behind fuel cells – may be the answer. Theoretically, heat generated in the summer could be used to generate a reaction, which could then be unwound later in the year.

Researchers at the Paul Scherrer Institut, for instance are looking at ways to take heat from the sun, zinc, oxygen and a dash of carbon to create zinc oxide and carbon monoxide. Zinc oxide could then be unwound in further reactions to produce hydrogen for fuel cells and zinc, which can be used to release electrons in other reactions. Some researchers have proposed storing heat through a zinc-to-zinc oxide reaction.

For more near-term storage, phase change materials – materials like zeolites and desiccants that move relatively easily from solid to liquid or liquid to gas states – could be used.

And for really near-term storage, says Werner Koldehoff, a board member of the German Solar Industry Association, households could use the ultimate phase change material: water. Water could be turned into ice (through a solar-driven chiller) and changed into water.

In Germany, energy storage for some residential thermal systems is accomplished through storing liquids heated by the sun in pipes in the earth.

Author: M. Kanellos

Pilas de combustible: caliente caliente

21/05/2009
Pilas de combustible: caliente caliente
Las pilas de combustible alimentadas por hidrógeno son hoy día los sistemas de producción de energía más eficientes y más limpios, aunque todavía precisan de ciertas mejoras, tal como ha advertido hoy en la Universidad de Zaragoza, John Kilner, uno de los máximo expertos en esta tecnología.
El investigador británico, científico del Imperial College London y una de la figuras punteras a nivel mundial en pilas de combustible y producción de hidrógeno, considera que es imprescindible reducir las elevadas temperaturas con que funcionan, cercanas a los 900ºC, para que los materiales que se utilizan en su composición sean más económicos.
Uno de los retos actuales más importantes de la humanidad es la búsqueda de alternativas energéticas, ante el agotamiento de los combustibles fósiles y los efectos nocivos sobre el medio ambiente al usarlos de un modo masivo. El desarrollo de una nueva economía basada en el uso masivo del hidrógeno se vislumbra cada día más como una real alternativa a la situación actual.
Para el profesor Kilner, las ventajas de las pilas de combustible cerámicas es que son muy versátiles en cuanto a los combustibles que utiliza, ya que van desde el hidrógeno hasta el gas natural, gas de síntesis, propano y butano.
Por el contrario, el experto ha precisado que el principal problema de las pilas de combustible es que precisan de materiales costosos (similares a los que se precisan para las turbinas de los aviones) debido a que precisan de altas temperaturas, cercanas al 900ºC. Esto representa una dificultad para lograr que este tipo de tecnología se generalice. De ahí, que uno de los objetivos de los investigadores en Ciencia de los Materiales sea sin duda reducir dicha temperatura para poder utilizara materiales más económicos.
Kilner ha explicado estas cuestiones dentro de la conferencia que ha impartido hoy en la Facultad de Ciencias de la Universidad de Zaragoza sobre “Conducción rápida de oxígeno en óxidos. ¿Podemos mejorar las pilas de combustible cerámicas?”, dentro de las relaciones que se han establecido entre el equipo investigador del profesor británico y el campus aragonés.
Precisamente, la Universidad de Zaragoza cuenta con uno de los pocos grupos en España que investiga Pilas de Combustible Cerámicas y Electrolizadores de Alta Temperatura de alta eficiencia para la producción de hidrógeno. El grupo se encuentra en el Instituto de Ciencia de Materiales de Aragón, Instituto Mixto UZ-CSIC y está dirigido por Victor Orera. El grupo colabora con grandes compañías y prestigiosos institutos en el campo de las Pilas de Combustible y Producción de Hidrógeno.

Las pilas de combustible alimentadas por hidrógeno son hoy día los sistemas de producción de energía más eficientes y más limpios, aunque todavía precisan de ciertas mejoras, tal como ha advertido hoy en la Universidad de Zaragoza, John Kilner, uno de los máximo expertos en esta tecnología.

FUENTE – Ecoperiodico – 20/05/09

El investigador británico, científico del Imperial College London y una de la figuras punteras a nivel mundial en pilas de combustible y producción de hidrógeno, considera que es imprescindible reducir las elevadas temperaturas con que funcionan, cercanas a los 900ºC, para que los materiales que se utilizan en su composición sean más económicos.

Uno de los retos actuales más importantes de la humanidad es la búsqueda de alternativas energéticas, ante el agotamiento de los combustibles fósiles y los efectos nocivos sobre el medio ambiente al usarlos de un modo masivo. El desarrollo de una nueva economía basada en el uso masivo del hidrógeno se vislumbra cada día más como una real alternativa a la situación actual.

Para el profesor Kilner, las ventajas de las pilas de combustible cerámicas es que son muy versátiles en cuanto a los combustibles que utiliza, ya que van desde el hidrógeno hasta el gas natural, gas de síntesis, propano y butano.

Por el contrario, el experto ha precisado que el principal problema de las pilas de combustible es que precisan de materiales costosos (similares a los que se precisan para las turbinas de los aviones) debido a que precisan de altas temperaturas, cercanas al 900ºC. Esto representa una dificultad para lograr que este tipo de tecnología se generalice. De ahí, que uno de los objetivos de los investigadores en Ciencia de los Materiales sea sin duda reducir dicha temperatura para poder utilizara materiales más económicos.

Kilner ha explicado estas cuestiones dentro de la conferencia que ha impartido hoy en la Facultad de Ciencias de la Universidad de Zaragoza sobre “Conducción rápida de oxígeno en óxidos. ¿Podemos mejorar las pilas de combustible cerámicas?”, dentro de las relaciones que se han establecido entre el equipo investigador del profesor británico y el campus aragonés.

Precisamente, la Universidad de Zaragoza cuenta con uno de los pocos grupos en España que investiga Pilas de Combustible Cerámicas y Electrolizadores de Alta Temperatura de alta eficiencia para la producción de hidrógeno. El grupo se encuentra en el Instituto de Ciencia de Materiales de Aragón, Instituto Mixto UZ-CSIC y está dirigido por Victor Orera. El grupo colabora con grandes compañías y prestigiosos institutos en el campo de las Pilas de Combustible y Producción de Hidrógeno.

A Catalyst for Cheaper Fuel Cells

03/04/2009

 

The material could replace platinum in hydrogen vehicles.

catalizadores

FUENTE – TechnologyReview – 02/04/09

A new catalyst based on iron works as well as platinum-based catalysts for accelerating the chemical reactions inside hydrogen fuel cells. The finding could help make fuel cells for electric cars cheaper and more practical.

Fuel cell researchers have been looking for cheaper, more abundant alternatives to platinum, which costs between $1,000 and $2,000 an ounce and is mined almost exclusively in just two countries: South Africa and Russia. One promising catalyst that uses far less expensive materials–iron, nitrogen, and carbon–has long been known to promote the necessary reactions, but at rates that are far too slow to be practical.

Now researchers at the Institut National de la Recherche Scientifique (INRS) in Quebec have dramatically increased the performance of this type of iron-based catalyst. Their material produces 99 amps per cubic centimeter at 0.8 volts, a key measurement of catalytic activity. That is 35 times better than the best nonprecious metal catalyst so far, and close to the Department of Energy’s goal for fuel-cell catalysts: 130 amps per cubic centimeter. It also matches the performance of typical platinum catalysts, says Jean-Pol Dodelet, a professor of energy, materials, and telecommunications at INRS who led the work.

The improvement, reported in the latest issue of the journal Science, is “quite surprising,” says Radoslav Adzic, a senior chemist at Brookhaven National Laboratory in Upton, NY, who also develops catalysts for fuel cells. The new material meets a benchmark for hydrogen fuel cells set five years ago that “we thought nobody would ever meet,” adds Hubert Gasteiger, a visiting professor of mechanical engineering at MIT. “For the very first time, a nonprecious metal catalyst makes sense.”

The INRS researchers’ key insight was finding a way to increase the number of active catalytic sites within the material–with more sites for chemical reactions, the overall rate of the reactions in the material increases. In previous work, the researchers had shown that heating carbon black (a powdery form of carbon similar to graphite) to high temperatures in the presence of ammonia and iron acetate created gaps in the carbon that are just a few atoms wide. Nitrogen atoms bind to opposite sides of these tiny gaps, and an iron ion bridges these atoms, forming an active site for catalysis. 

 

 

Author: K. Bullis

First hydrogen fuel cell for the home

01/04/2009

First commercial hydrogen fuel cell for the home has gone into its final testing phase and will be available in Japan the spring 2009.

FUENTE – Mnn – 30/03/09

Japanese electronics company Matsushita, best known for its Panasonic line of home electronics and appliances, will claim first place in the race to put commercial home fuel cells on the market, but a slew of other companies are in tow.

 The fuel cell can optimally provide 70 percent of the energy needs for a 1,280 square foot house with four people. According to Matsushita, the cell can reduce energy consumption by 22 percent and CO2 emissions by 12 percent as compared to all other power sources. The unit is guaranteed to last 40,000 hours, which amounts to ten years of operation, roughly the same amount of time it will take a consumer in Japan to recoup their initial investment. (The government will subsidize the purchase, although how much remains undetermined. The company estimates a $10,000 investment by consumers.)

 Customers will purchase the fuel cell system from a local gas company, who will install it, a fairly simple process says Matsushita.

 While fuel cell technology takes many different forms, in this case, the cogeneration home fuel cell hooks up to the city’s natural gas lines, extracting hydrogen from the gas in a fuel-processing device. The stream of hydrogen is combined with oxygen through a series of polyelectrolyte membranes, a process that creates electricity, heat, and water. The home fuel cell produces between 500 watts and a 1 kilowatt of electricity and captures the heat to warm a tank of water, used for showers, dishes etc.

 The company views the product as a contribution to Japan’s goals of reducing global CO2 emissions 50 percent by 2050.

 Matsushita was evasive, however, about the amount of energy required to manufacture its fuel cell. In general fuel cells require a great deal of energy; for example, this unit contains more than 2,000 components. Whether the production of the units negates the energy and CO2 savings gained by customers is unclear.

 Could the home fuel cell work in the US today? It could. With a few tweaks to the voltage and filters that deal with impurities in the natural gas, technically speaking, the fuel cell would work. Will it be here soon? They say there are no specific plans, but Matsushita hopes to make the home fuel cell available in the EU, Africa, China, and the Americas sooner than later.

Butane Fuel Cell, a Viable Solution to Replace Lithium-Ion Batteries

26/03/2009

 

A company called Lilliputian Systems has developed a fuel cell to replace Lithium-Ion Batteries in electronics industry. It will be very interesting to see how science will be able to evolve from this point on as the new fuel cell system that runs on butane cartridges is able to replace heavy laptop and mobile batteries.

battery

FUENTE – The Green Optimistic – 25/03/09

 The system had a lot of technical challenges to overcome in the past but it will be on the market by the mid of next year. The fuel cell system will be used on airplanes as well, as butane is sold in sealed cartridges with chip identification.

The cost of a butane cartridge that can recharge an iPhone 16-20 times is around $1 – $3 and the fuel cell system costs about $200 initially. The estimation is to go down to $100 after a time on the market. Mouli Ramani, vice president of business development at Lilliputian Systems plans to introduce the fuel cells directly into mobile phones and other consumer electronics.

The fuel cell system developed by Lilliputian Systems is able to store 5-10 times more energy than conventional lithium-ion batteries and the recharge takes only the time necessary to swap the cartridge.

 

 

Author: Cristi

New Palladium Nanoparticles Making Fuel Cells Better

23/03/2009

 

Nowadays, the cost of a hydrogen fuel cell is mostly increased by the cost of its components, and mostly by platinum. In the search for finding better materials for making fuel cells, researchers have already found alternatives to the expensive platinum a long time ago, but they were not as efficient. One of this substitute materials is palladium – far cheaper and much more abundant, but that didn’t have enough surface area to make the fuel cell catalysis efficient.

palladium-catalyst-fuel-cell

FUENTE – The Green Optimistic – 23/03/09

The researchers from Brown University have found a way to increase the surface of the palladium by creating bigger nanoparticles – 40% more surface than commercially available particles. Also, these palladium particles remain intact four times longer than the currently available ones.

“This approach is very novel. It works,” said Vismadeb Mazumder, a graduate student who joined chemistry professor Shouheng Sun on the paper. “It’s two times as active, meaning you need half the energy to catalyze. And it’s four times as stable.”

The newly invented particles have 4.5 nanometers in size and are attached to a carbon platform at the anode end of a direct formic acid fuel cell. The researchers then did something new: They used weak binding amino ligands to keep the palladium nanoparticles separate and at the same size as they’re attached to the carbon platform. By keeping the particles separate and uniform in size, they increased the available surface area on the platform and raised the efficiency of the fuel cell reaction.

Nanowires May Lead To Better Fuel Cells

12/03/2009

The creation of long platinum nanowires at the University of Rochester could soon lead to the development of commercially viable fuel cells.

lo342lo341-1

FUENTE – University of Rochester – 11/03/09

Described in a paper published today in the journal Nano Letters, the new wires should provide significant increases in both the longevity and efficiency of fuel cells, which have until now been used largely for such exotic purposes as powering spacecraft. Nanowire enhanced fuel cells could power many types of vehicles, helping reduce the use of petroleum fuels for transportation, according to lead author James C. M. Li, professor of mechanical engineering at the University of Rochester.

“People have been working on developing fuel cells for decades. But the technology is still not being commercialized,” says Li. “Platinum is expensive, and the standard approach for using it in fuel cells is far from ideal. These nanowires are a key step toward better solutions.”

The platinum nanowires produced by Li and his graduate student Jianglan Shui are roughly ten nanometers in diameter and also centimeters in length—long enough to create the first self-supporting “web” of pure platinum that can serve as an electrode in a fuel cell.

Much shorter nanowires have already been used in a variety of technologies, such as nanocomputers and nanoscale sensors. By a process known as electrospinning—a technique used to produce long, ultra-thin solid fibers—Li and Shui were able to create platinum nanowires that are thousands of times longer than any previous such wires.

“Our ultimate purpose is to make free-standing fuel cell catalysts from these nanowires,” says Li.

Within a fuel cell the catalyst facilitates the reaction of hydrogen and oxygen, splitting compressed hydrogen fuel into electrons and acidic hydrogen ions. Electrons are then routed through an external circuit to supply power, while the hydrogen ions combine with electrons and oxygen to form the “waste” product, typically liquid or vaporous water.

Platinum has been the primary material used in making fuel cell catalysts because of its ability to withstand the harsh acidic environment inside the fuel cell. Its energy efficiency is also substantially greater than that of cheaper metals like nickel.

Prior efforts in making catalysts have relied heavily on platinum nanoparticles in order to maximize the exposed surface area of platinum. The basic idea is simple: The greater the surface area, the greater the efficiency. Li cites two main problems with the nanoparticle approach, both linked to the high cost of platinum.

First, individual particles, despite being solid, can touch one another and merge through the process of surface diffusion, combining to reduce their total surface area and energy. As surface area decreases, so too does the rate of catalysis inside the fuel cell.

Second, nanoparticles require a carbon support structure to hold them in place. Unfortunately, platinum particles do not attach particularly well to these structures, and carbon is subject to oxidization, and thus degradation. As the carbon oxidizes over time, more and more particles become dislodged and are permanently lost.

Li’s nanowires avoid these problems completely.

With platinum arranged into a series of centimeter long, flexible, and uniformly thin wires, the particles comprising them are fixed in place and need no additional support. Platinum will no longer be lost during normal fuel cell operation.

“The reason people have not come to nanowires before is that it’s very hard to make them,” says Li. “The parameters affecting the morphology of the wires are complex. And when they are not sufficiently long, they behave the same as nanoparticles.”

One of the key challenges Li and Shui managed to overcome was reducing the formation of platinum beads along the nanowires. Without optimal conditions, instead of a relatively smooth wire, you end up with what looks more like a series of interspersed beads on a necklace. Such bunching together of platinum particles is another case of unutilized surface area.

“With platinum being so costly, it’s quite important that none of it goes to waste when making a fuel cell,” says Li. “We studied five variables that affect bead formation and we finally got it—nanowires that are almost bead free.”

His current objective is to further optimize laboratory conditions to obtain fewer beads and even longer, more uniformly thin nanowires. “After that, we’re going to make a fuel cell and demonstrate this technology,” says Li.

 

Author: E. Wendel

Nanostructure Boosts Efficiency In Energy Transport

04/03/2009

Overcoming a critical conductivity challenge to clean energy technologies, Boston College researchers have developed a titanium nanostructure that provides an expanded surface area and demonstrates significantly greater efficiency in the transport of electrons.

nanostructure

FUENTE – ScienceDaily – 03/03/09

The challenge has vexed researchers pursuing solar panels thick enough to absorb sunlight, yet thin enough to collect and transport electrons with minimal energy loss. Similarly, the relatively new science of water splitting requires capturing energy within semiconductor materials and then efficiently transporting charges ultimately used to generate hydrogen.

Boston College Asst. Prof of Chemistry Dunwei Wang and members of his lab found that incorporating two titanium-based semiconductors into a nano-scale structure improved the efficiency of power-collecting efforts by approximately 33 percent, the team reported in the online edition of the Journal of the American Chemical Society.

The team achieved a peak conversion efficiency of 16.7 percent under ultraviolet light, reported Wang and his co-authors, BC graduate students Yongjing Lin and Sa Zhou, post doctoral researcher Xiaohua Liu and undergraduate Stafford Sheehan. That compared to an efficiency of 12 percent from a structure composed only of titanium dioxide (TiO2).

Wang said the efficiency gains within the novel material can serve so-called water-splitting, where semiconductor catalysts have been shown to separate and store hydrogen and oxygen gases.

“The current challenge in splitting water involves how best to capture photons within the semiconductor material and then grab and transport them to produce hydrogen,” Wang says. “For practical water splitting, you want to generate oxygen and hydrogen separately. For this, good electrical conductivity is of great importance because it allows you to collect electrons in the oxygen-generation region and transport them to the hydrogen-generation chamber for hydrogen production.”

By using two crystalline semiconductors – materials critical to the processes of energy capture and transport – Wang says the researchers discovered a new and successful transfer mechanism in an engineered structure nearly invisible to the human eye.

Titanium dioxide has played a key role in early water-splitting research because of its prowess as a catalyst. However, its light absorption is confined to ultraviolet rays only and the material is also a relatively poor conductor.

Wang and his researchers started by growing a nanostructure made of titanium disilicide (TiSi2), a semiconductor capable of absorbing solar light and a material able to provide a sturdy structure with expanded surface area critical to absorbing photons. Still in need of its catalytic capabilities, titanium dioxide was used to coat the structure, Wang said.

The resulting net-like nanostructure effectively separated charges, collecting the electrons in the titanium disilicide core and transporting them away. The structure transferred positive charges to the titanium dioxide region of the material for chemical reactions. In water-splitting, these charges could potentially be used to generate hydrogen.

Diseñan un vehículo eléctrico de pila de combustible y energía solar

02/03/2009

Investigadores de la Universidad Politécnica de Madrid participan en el proyecto EPISOL cuyo objetivo es diseñar un coche que no emita ningún tipo de contaminación a la atmósfera y que, además, tenga suficiente autonomía.

episol

FUENTE – Madri+d – 02/03/09 

Los vehículos eléctricos híbridos ofrecen una solución a los problemas actuales relacionados con la contaminación ambiental y la limitada autonomía de los vehículos exclusivamente eléctricos. En este contexto, investigadores del Instituto Universitario de Investigación del Automóvil (INSIA/UPM) en colaboración con el Instituto de Automática Industrial (IAI-CSIC) y la empresa CEMUSA participan en el proyecto EPISOL cuyo objetivo es el diseño y la fabricación de un vehículo urbano ligero con propulsión eléctrica híbrida.

EPISOL: vehículo Eléctrico de Pilar de Combustible y Energía Solar

Las emisiones debidas al tráfico urbano de vehículos representan uno de los principales problemas medioambientales en las grandes capitales europeas. 

En el municipio de Madrid, y según los inventarios publicados por su Ayuntamiento, el transporte por carretera es responsable de más del 50% de las emisiones de CO2, el 75% de las emisiones de NOx, el 90% de las emisiones de CO, y el 30% de las emisiones de compuestos orgánicos volátiles. 

 

En los últimos años, los fabricantes de automóviles y las administraciones públicas han acometido importantes proyectos de investigación orientados al desarrollo de sistemas de propulsión y combustibles alternativos a los actualmente mayoritarios.

Un vehículo eléctrico híbrido (VEH) es un vehículo en el que al menos una de las fuentes de energía, almacenamiento o conversión puede entregar energía eléctrica. Los VEH dan solución al compromiso del problema de contaminación medioambiental y al de capacidad de autonomía limitada de los actuales vehículos puramente eléctricos. 

episolchasis

Los VEH constan de motor eléctrico y de un motor de combustión interna (MCI) para proporcionar una mayor autonomía así como un mejor control del problema medioambiental. 

La complejidad en el diseño del vehículo se incrementa significativamente, debido a los sistemas de control y sujeción que son necesarios para el motor térmico y eléctrico además de los componentes necesarios para controlar la potencia combinada que proviene de ambas fuentes. 

Los principales elementos que componen el sistema de propulsión de los VEH son: las baterías (como sistema de almacenamiento), el motor térmico (como elemento que aporta de energía), el motor/generador eléctrico y la transmisión.

Un vehículo eléctrico híbrido con pila de combustible (VEHPC) es aquel en el que al menos dos de las fuentes de energía, almacenamiento o conversión pueden suministrar energía eléctrica. Los principales elementos que lo componen son: baterías (como sistema de almacenamiento), pila de combustible (como elemento que aporta energía), motor eléctrico y transmisión.

Las ventajas más destacables de este tipo de vehículos son: la tracción es sólo eléctrica, la reducción del consumo y las emisiones contaminantes, el ahorro energético con la aplicación de freno regenerativo, la reducción del ruido y la reducción de energía fósil mediante la captación de energía solar.

Este vehículo urbano, respetuoso con el medio ambiente, resulta idóneo para su utilización en áreas peatonales y de motorización restringida, zonas aeroportuarias y recintos feriales, carga en parques y jardines, auto-taxi y para personas con movilidad reducida.